Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350878, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581345

RESUMO

Tumor-associated macrophages (TAM) are abundant in several tumor types and usually correlate with poor prognosis. Previously, we demonstrated that anti-inflammatory macrophages (M2) inhibit NK cell effector functions. Here, we explored the impact of TAM on NK cells in the context of clear-cell renal cell carcinoma (ccRCC). Bioinformatics analysis revealed that an exhausted NK cell signature strongly correlated with an M2 signature. Analysis of TAM from human ccRCC samples confirmed that they exhibited an M2-skewed phenotype and inhibited IFN-γ production by NK cells. Moreover, human M0 macrophages cultured with conditioned media from ccRCC cell lines generated macrophages with an M2-skewed phenotype (TAM-like), which alike TAM, displayed suppressive activity on NK cells. Moreover, TAM depletion in the mouse Renca ccRCC model resulted in delayed tumor growth and reduced volume, accompanied by an increased frequency of IFN-γ-producing tumor-infiltrating NK cells that displayed heightened expression of T-bet and NKG2D and reduced expression of the exhaustion-associated co-inhibitory molecules PD-1 and TIM-3. Therefore, in ccRCC, the tumor microenvironment polarizes TAM toward an immunosuppressive profile that promotes tumor-infiltrating NK cell dysfunction, contributing to tumor progression. In addition, immunotherapy strategies targeting TAM may result in NK cell reinvigoration, thereby counteracting tumor progression.

3.
Oncoimmunology ; 11(1): 2104991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936986

RESUMO

NKG2D is a major natural killer (NK) cell-activating receptor that recognizes eight ligands (NKG2DLs), including MICA, and whose engagement triggers NK cell effector functions. As NKG2DLs are upregulated on tumor cells but tumors can subvert the NKG2D-NKG2DL axis, NKG2DLs constitute attractive targets for antibody (Ab)-based immuno-oncology therapies. However, such approaches require a deep characterization of NKG2DLs and NKG2D cell surface expression on primary tumor and immune cells. Here, using a bioinformatic analysis, we observed that MICA is overexpressed in renal cell carcinoma (RCC), and we also detected an association between the NKG2D-MICA axis and a diminished overall survival of RCC patients. Also, by flow cytometry (FC), we observed that MICA was the only NKG2DL over-expressed on clear cell renal cell carcinoma (ccRCC) tumor cells, including cancer stem cells (CSC) that also coexpressed NKG2D. Moreover, tumor-infiltrating leukocytes (TIL), but not peripheral blood lymphoid cells (PBL) from ccRCC patients, over-expressed MICA, ULBP3 and ULBP4. In addition, NKG2D was downregulated on peripheral blood NK cells (PBNK) from ccRCC patients but upregulated on tumor-infiltrating NK cells (TINK). These TINK exhibited impaired degranulation that negatively correlated with NKG2D expression, diminished IFN-γ production, upregulation of TIM-3, and an impaired glucose intake upon stimulation with cytokines, indicating that they are dysfunctional, display features of exhaustion and an altered metabolic fitness. We conclude that ccRCC patients exhibit a distorted MICA-NKG2D axis, and MICA emerges as the forefront NKG2DL for the development of targeted therapies in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/terapia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Neoplasias Renais/terapia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Células Matadoras Naturais
4.
Front Immunol ; 12: 745939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616407

RESUMO

Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.


Assuntos
Antígeno B7-H1/biossíntese , Linfócitos T CD8-Positivos/citologia , Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Células Matadoras Naturais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Expressão Gênica , Humanos , Interferon gama/farmacologia , Interleucina-18/farmacologia , Células K562 , Estimativa de Kaplan-Meier , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Monitorização Imunológica , Monócitos/metabolismo , Proteínas Recombinantes/farmacologia , Regulação para Cima
5.
Front Immunol ; 12: 713158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394116

RESUMO

Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ligantes , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Receptores de Células Matadoras Naturais/genética , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
Front Immunol ; 12: 681615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149719

RESUMO

Although natural killer (NK) cells infiltrate clear cell renal cell carcinomas (ccRCC), the most frequent malignancy of the kidney, tumor progression suggests that they become dysfunctional. As ccRCC-driven subversion of NK cell effector functions is usually accompanied by phenotypic changes, analysis of such alterations might lead to the identification of novel biomarkers and/or targets in immuno-oncology. Consequently, we performed a phenotypic analysis of peripheral blood NK cells (PBNK) and tumor-infiltrating NK cells (TINK) from ccRCC patients. Compared to HD, PBNK from ccRCC patients exhibited features of activated cells as shown by CD25, CD69 and CD62L expression. They also displayed increased expression of DNAM-1, CD48, CD45, MHC-I, reduced expression of NKG2D, and higher frequencies of CD85j+ and PD-1+ cells. In addition, compared to PBNK from ccRCC patients, TINK exhibited higher expression of activation markers, tissue residency features and decreased expression of the activating receptors DNAM-1, NKp30, NKp46, NKp80 and CD16, suggesting a more inhibitory phenotype. Analysis of The Cancer Genome Atlas (TCGA) revealed that CD48, CD45, CD85j and PD-1 are significantly overexpressed in ccRCC and that their expression is associated with an NK cell infiltration signature. Calculation of z-scores revealed that their expression on PBNK, alone or combined, distinguished ccRCC patients from HD. Therefore, these molecules emerge as novel potential biomarkers and our results suggest that they might constitute possible targets for immunotherapy in ccRCC patients.


Assuntos
Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/etiologia , Neoplasias Renais/metabolismo , Células Matadoras Naturais/imunologia , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Idoso , Biomarcadores , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Humanos , Imunofenotipagem , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Nefrectomia
7.
J Leukoc Biol ; 109(1): 185-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095941

RESUMO

After recognition, NK cells can kill susceptible target cells through perforin-dependent mechanisms or by inducing death receptor-mediated apoptosis, and they can also secrete cytokines that are pivotal for immunomodulation. Despite the critical role as effector cells against tumors and virus-infected cells, NK cells have been implicated in the regulation of T cell-mediated responses in different models of autoimmunity, transplantation, and viral infections. Here, we review the mechanisms described for NK cell-mediated inhibition of adaptive immune responses, with spotlight on the emerging evidence of their regulatory role that shapes antitumor immune responses.


Assuntos
Imunidade Adaptativa/imunologia , Citotoxicidade Imunológica/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Animais , Humanos
8.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32518090

RESUMO

BACKGROUND: Natural killer and cytotoxic CD8+ T cells are major players during antitumor immunity. They express NKG2D, an activating receptor that promotes tumor elimination through recognition of the MHC class I chain-related proteins A and B (MICA and MICB). Both molecules are overexpressed on a great variety of tumors from different tissues, making them attractive targets for immunotherapy. However, tumors shed MICA and MICB, and the soluble forms of both (sMICA and sMICB) mediate tumor-immune escape. Some reports indicate that anti-MICA antibodies (Ab) can promote the restoration of antitumor immunity through the induction of direct antitumor effects (antibody-dependent cell-mediated cytotoxicity, ADCC) and scavenging of sMICA. Therefore, we reasoned that an active induction of anti-MICA Ab with an immunogenic protein might represent a novel therapeutic and prophylactic alternative to restore antitumor immunity. METHODS: We generated a highly immunogenic chimeric protein (BLS-MICA) consisting of human MICA fused to the lumazine synthase from Brucella spp (BLS) and used it to generate anti-MICA polyclonal Ab (pAb) and to investigate if these anti-MICA Ab can reinstate antitumor immunity in mice using two different mouse tumors engineered to express MICA. We also explored the underlying mechanisms of this expected therapeutic effect. RESULTS: Immunization with BLS-MICA and administration of anti-MICA pAb elicited by BLS-MICA significantly delayed the growth of MICA-expressing mouse tumors but not of control tumors. The therapeutic effect of immunization with BLS-MICA included scavenging of sMICA and the anti-MICA Ab-mediated ADCC, promoting heightened intratumoral M1/proinflammatory macrophage and antigen-experienced CD8+ T cell recruitment. CONCLUSIONS: Immunization with the chimeric protein BLS-MICA constitutes a useful way to actively induce therapeutic anti-MICA pAb that resulted in a reprogramming of the antitumor immune response towards an antitumoral/proinflammatory phenotype. Hence, the BLS-MICA chimeric protein constitutes a novel antitumor vaccine of potential application in patients with MICA-expressing tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfoma/imunologia , Proteínas Recombinantes de Fusão/imunologia , Neoplasias da Bexiga Urinária/imunologia , Animais , Brucella/enzimologia , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Linfoma/patologia , Linfoma/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
9.
Methods Mol Biol ; 2097: 125-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31776924

RESUMO

Natural killer (NK) cells can kill virus-infected cells and tumor cells without prior sensitization and secrete numerous cytokines and chemokines that modulate the activity of different cells of the immune system. The recognition of target cells is mediated by germ line-encoded receptors, and the activity of NK cells can be further regulated by soluble factors such as cytokines and Toll-like receptor ligands. Thus, NK cells display an exciting potential as a powerful immunotherapeutic tool against malignant diseases, and different strategies are being tested aiming to overcome tumor-induced NK cell suppression and restore NK-cell mediated antitumor activity. This section describes different flow cytometry-based protocols to study NK cell effector functions, which can be used to evaluate the immunomodulatory ability of different therapeutic compounds.


Assuntos
Imunomodulação/imunologia , Células Matadoras Naturais/imunologia , Degranulação Celular , Membrana Celular/metabolismo , Separação Celular , Humanos , Células Matadoras Naturais/fisiologia , Fenótipo , Coloração e Rotulagem
10.
Medicina (B Aires) ; 79(Spec 6/1): 564-569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31864227

RESUMO

In recent times, our understanding of the role of the immune system in different physiopathological situations has increased markedly. A new set of cells, generically known as innate lymphoid cells (ILC), has been discovered in the lymphoid compartment. Five ILC subsets can be recognized according to phenotypic and functional similarities with different subpopulations of T lymphocytes. Unlike T and B lymphocytes, ILC do not express antigen receptors nor undergo selection and clonal expansion upon activation. Instead, they respond rapidly to cytokines and danger signals in infected or inflamed tissues, producing cytokines that direct the immune response toward a type suitable for controlling the initial insult. In addition, ILC establish a crosstalk with other cells of the microenvironment that contributes to the maintenance and restoration of tissue homeostasis. Although many evidences on ILC were obtained from animal models, solid data confirm their existence in humans and their role in various inflammatory disorders. In this article, we address new knowledge on ILC, particularly on their role in the homeostasis of the immune system and in various inflammatory pathologies, in order to present new actors regulating immunity and immunopathology and affecting human health.


En tiempos recientes, nuestra comprensión del rol del sistema inmune en diferentes situaciones fisiopatológicas ha aumentado notablemente. En el compartimiento linfoide se ha descubierto un conjunto de células denominadas células linfoides innatas o innate lymphoid cells (ILC). Las ILC incluyen cinco grupos, clasificados según su similitud fenotípica y funcional con diferentes subpoblaciones de linfocitos T. A diferencia de los linfocitos T y B, las ILC no expresan receptores de antígeno ni sufren selección y expansión clonal cuando se activan. En cambio, responden rápidamente frente a citoquinas y señales de peligro en tejidos infectados o inflamados produciendo citoquinas que dirigen la respuesta inmune hacia un tipo adecuado para controlar la noxa original. Además, las ILC establecen un diálogo cruzado con otras células del microambiente que contribuye al mantenimiento y la restauración de la homeostasis tisular. Si bien muchas evidencias acerca de las ILC fueron obtenidas en modelos animales, existen datos sólidos que confirman su existencia en seres humanos y su papel en diversos trastornos inflamatorios. En este artículo, abordamos los nuevos conocimientos acerca de las ILC, y su rol en la homeostasis del sistema inmune y en diversas patologías inflamatorias, con el fin de presentar nuevos actores que regulan la inmunidad y la inmunopatología, lo que repercute en la salud humana.


Assuntos
Homeostase/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Enteropatias/imunologia , Pneumopatias/imunologia , Linfócitos/imunologia , Dermatopatias/imunologia , Homeostase/fisiologia , Humanos , Inflamação/fisiopatologia , Enteropatias/fisiopatologia , Pneumopatias/fisiopatologia , Dermatopatias/fisiopatologia
11.
J Immunol ; 200(3): 1008-1015, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29282306

RESUMO

NK cells play important roles during immunosurveillance against tumors and viruses as they trigger cytotoxicity against susceptible cells and secrete proinflammatory cytokines such as IFN-γ. In addition, upon activation, macrophages can become proinflammatory (M1) or anti-inflammatory (M2) cells. Although the consequences of the cross-talk between M1 and NK cells are known, the outcome of the cross-talk between M2 and NK cells remains ill-defined. Therefore, in the current work, we investigated the outcome and the underlying mechanisms of the interaction between resting or stimulated human NK cells with M1 or M2. We observed a lower percentage of activated NK cells that produced less IFN-γ upon coculture with M2. Also, CD56dim NK cells cocultured with M2 displayed lower degranulation and cytotoxic activity than NK cells cocultured with M1. Soluble TGF-ß and M2-driven upregulation of CD85j (ILT-2) on NK cells accounted for the diminished IFN-γ production by CD56bright NK cells, whereas M2-driven upregulation of CD85j on NK cells accounted for the generation of hyporesponsive CD56dim NK cells with limited degranulation and cytotoxic capacity. Accordingly, M2 expressed higher amounts of HLA-G, the main ligand for CD85j, than M1. Hyporesponsiveness to degranulation in NK cells was not restored at least for several hours upon removal of M2. Therefore, alternatively activated macrophages restrain NK cell activation and effector functions through different mechanisms, leading to NK cells that display diminished IFN-γ production and at least a transiently impaired degranulation ability. These results unravel an inhibitory circuit of possible relevance in pathological situations.


Assuntos
Comunicação Celular/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Ativação de Macrófagos/imunologia , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD/imunologia , Antígeno CD56/metabolismo , Células Cultivadas , Técnicas de Cocultura , Antígenos HLA-G/metabolismo , Humanos , Interferon gama/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Macrófagos/imunologia , Fator de Crescimento Transformador beta/imunologia
12.
Front Immunol ; 8: 1959, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29403472

RESUMO

Interleukin (IL)-23 is a member of the IL-12 family of cytokines that, as the other members of this family, is secreted by monocytes, macrophages, and dendritic cells (DC) upon recognition of bacterial, viral, and fungal components. IL-23 is critical during immunity against acute infections, and it is also involved in the development of autoimmune diseases. Although immunoregulatory effects of IL-23 on mouse natural killer (NK) cells have been described, the effect of IL-23 on human NK cells remains ill-defined. In this study, we observed that monocytes stimulated with LPS secreted IL-23 and that blockade of this cytokine during monocyte and NK cell coculture led to a diminished production of IFN-γ by NK cells. Accordingly, rIL-23-induced NK cell activation and stimulated IFN-γ production by CD56bright NK cells. This effect involved MEK1/MEK2, JNK, PI3K, mammalian target of rapamycin, and NF-κB, but not STAT-1, STAT-3, nor p38 MAPK pathways. Moreover, while NK cell-mediated cytotoxicity remained unaltered, antibody-dependent cellular cytotoxicity (ADCC) was enhanced after IL-23 stimulation. In addition, IL-23 displayed a synergistic effect with IL-18 for IFN-γ production by both CD56bright and CD56dim NK cells, and this effect was due to a priming effect of IL-23 for IL-18 responsiveness. Furthermore, NK cells pre-stimulated with IL-18 promoted an increase in CD86 expression and IL-12 secretion by DC treated with LPS, and IL-23 potentiated these effects. Moreover, IL-23-driven enhancement of NK cell "helper" function was dependent on NK cell-derived IFN-γ. Therefore, our results suggest that IL-23 may trigger NK cell-mediated "helper" effects on adaptive immunity, shaping T cell responses during different pathological situations through the regulation of DC maturation.

13.
J Immunol ; 197(3): 953-61, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342842

RESUMO

Despite the classical function of NK cells in the elimination of tumor and of virus-infected cells, evidence for a regulatory role for NK cells has been emerging in different models of autoimmunity, transplantation, and viral infections. However, this role has not been fully explored in the context of a growing tumor. In this article, we show that NK cells can limit spontaneous cross-priming of tumor Ag-specific CD8(+) T cells, leading to reduced memory responses. After challenge with MC57 cells transduced to express the model Ag SIY (MC57.SIY), NK cell-depleted mice exhibited a significantly higher frequency of SIY-specific CD8(+) T cells, with enhanced IFN-γ production and cytotoxic capability. Depletion of NK cells resulted in a CD8(+) T cell population skewed toward an effector memory T phenotype that was associated with enhanced recall responses and delayed tumor growth after a secondary tumor challenge with B16.SIY cells. Dendritic cells (DCs) from NK cell-depleted tumor-bearing mice exhibited a more mature phenotype. Interestingly, tumor-infiltrating and tumor-draining lymph node NK cells displayed an upregulated expression of the inhibitory molecule programmed death ligand 1 that, through interaction with programmed death-1 expressed on DCs, limited DC activation, explaining their reduced ability to induce tumor-specific CD8(+) T cell priming. Our results suggest that NK cells can, in certain contexts, have an inhibitory effect on antitumor immunity, a finding with implications for immunotherapy in the clinic.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Neoplasias Experimentais/imunologia , Animais , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia
14.
J Immunol ; 195(5): 2141-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232426

RESUMO

Cross-talk between mature dendritic cells (mDC) and NK cells through the cell surface receptors NKp30 and DNAM-1 leads to their reciprocal activation. However, the impact of regulatory dendritic cells (regDC) on NK cell function remains unknown. As regDC constrain the immune response in different physiological and pathological conditions, the aim of this work was to investigate the functional outcome of the interaction between regDC and NK cells and the associated underlying mechanisms. RegDC generated from monocyte-derived DC treated either with LPS and dexamethasone, vitamin D3, or vitamin D3 and dexamethasone instructed NK cells to secrete lower amounts of IFN-γ than NK cells exposed to mDC. Although regDC triggered upregulation of the activation markers CD69 and CD25 on NK cells, they did not induce upregulation of CD56 as mDC, and silenced IFN-γ secretion through mechanisms involving insufficient secretion of IL-18, but not IL-12 or IL-15 and/or induction of NK cell apoptosis. Blocking experiments demonstrated that regDC curb IFN-γ secretion by NK cells through a dominant suppressive mechanism involving IL-10, NK cell inhibitory receptors, and, unexpectedly, engagement of the activating receptor NKp46. Our findings unveil a previously unrecognized cross-talk through which regDC shape NK cell function toward an alternative activated phenotype unable to secrete IFN-γ, highlighting the plasticity of NK cells in response to tolerogenic stimuli. In addition, our findings contribute to identify a novel inhibitory role for NKp46 in the control of NK cell function, and have broad implications in the resolution of inflammatory responses and evasion of antitumor responses.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Células Dendríticas/imunologia , Interferon gama/imunologia , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Células Cultivadas , Colecalciferol/imunologia , Colecalciferol/farmacologia , Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Dexametasona/imunologia , Dexametasona/farmacologia , Citometria de Fluxo , Glucocorticoides/imunologia , Glucocorticoides/farmacologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon gama/biossíntese , Interleucina-10/metabolismo , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/imunologia , Vitaminas/imunologia , Vitaminas/farmacologia
15.
Eur J Immunol ; 45(1): 192-202, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25308526

RESUMO

IL-27, a member of the IL-12 family of cytokines, is produced by APCs, and displays pro- and anti-inflammatory effects. How IL-27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL-27 and that blockade of IL-27R (CD130) reduced the amount of IFN-γ produced by NK cells during their coculture, showing the importance of IL-27 during DC-NK-cell crosstalk. Accordingly, human rIL-27 stimulated IFN-γ secretion by NK cells in a STAT1-dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL-18. Preincubation experiments demonstrated that IL-27 primed NK cells for IL-18-induced IFN-γ secretion, which was associated with an IL-27-driven upregulation of T-bet expression. Also, IL-27 triggered NKp46-dependent NK-cell-mediated cytotoxicity against Raji, T-47D, and HCT116 cells, and IL-18 enhanced this cytotoxic response. Such NK-cell-mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL-mediated cytotoxicity but not Fas-FasL interaction. Moreover, IL-27 also potentiated Ab-dependent cell-mediated cytotoxicity against mAb-coated target cells. Taken together, IL-27 stimulates NK-cell effector functions, which might be relevant in different physiological and pathological situations.


Assuntos
Células Dendríticas/imunologia , Interleucina-18/farmacologia , Interleucinas/farmacologia , Células Matadoras Naturais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/imunologia , Técnicas de Cocultura , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/imunologia , Citotoxicidade Imunológica , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Regulação da Expressão Gênica , Células HCT116 , Humanos , Interleucina-18/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Interleucinas/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Cultura Primária de Células , Proteínas Recombinantes/farmacologia , Transdução de Sinais
16.
Immunity ; 41(5): 830-42, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517615

RESUMO

Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8(+) T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-? production and dendritic cell activation were triggered by tumor-cell-derived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-? production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , DNA/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Proteínas de Membrana/imunologia , Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Células Dendríticas/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Interferon beta/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Nucleotidiltransferases , Receptores de Antígenos de Linfócitos T/imunologia , Receptores Purinérgicos P2X7/genética , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Microambiente Tumoral/imunologia
17.
J Immunol ; 193(8): 4254-60, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25217157

RESUMO

Endogenous type I IFN production after innate immune recognition of tumor cells is critical for generating natural adaptive immune responses against tumors in vivo. We recently have reported that targeting low doses of IFN-ß to the tumor microenvironment using tumor-specific mAbs can facilitate antitumor immunity, which could be augmented further with PD-L1/PD-1 blockade. However, sustained high doses of type I IFNs in the tumor microenvironment, which are potently therapeutic alone, may function through distinct mechanisms. In the current report, we demonstrate that high-dose intratumoral type I IFNs indeed exerted a profound therapeutic effect in the murine B16 model, which unexpectedly did not increase T cell responses. Moreover, bone marrow chimeras revealed a role for type I IFN signaling on nonhematopoietic cells, and most of the therapeutic effect was retained in mice deficient in T, B, and NK cells. Rather, the tumor vasculature was ablated with high-dose intratumoral IFN-ß, and conditional deletion of IFN-α/ßR in Tie2-positive vascular endothelial cells eliminated most of the antitumor activity. Therefore, the major component of the antitumor activity of sustained high doses of type I IFNs occurs through a direct antiangiogenic effect. Our data help resolve conditions under which distinct antitumor mechanisms of type I IFNs are operational in vivo.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antineoplásicos/administração & dosagem , Interferon beta/administração & dosagem , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Receptor de Interferon alfa e beta/genética , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Células Matadoras Naturais/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos
18.
Cancer Immunol Immunother ; 62(12): 1781-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24114144

RESUMO

The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b(+)Gr-1(+), mostly CD11b(+)Ly6G(+)Ly6C(int) and CD11b(+)Ly6G(-)Ly6C(high) cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b(+)Ly6G(+)Ly6C(int) cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b(+)Ly6G(+)Ly6C(int) cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b(+)Gr-1(+) cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b(+)Gr-1(+) cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b(+)Ly6G(+)Ly6C(int) cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.


Assuntos
Antígenos Ly/imunologia , Neoplasias da Mama/imunologia , Antígeno CD11b/imunologia , Células Matadoras Naturais/imunologia , Acetato de Medroxiprogesterona/farmacologia , Células Mieloides/imunologia , Animais , Antígenos Ly/metabolismo , Antineoplásicos Hormonais/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antígeno CD11b/metabolismo , Diferenciação Celular , Proliferação de Células , Citotoxicidade Imunológica , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Tumorais Cultivadas
19.
PLoS One ; 8(9): e73658, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058482

RESUMO

The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B(+) T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B(+) B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role.


Assuntos
Doença Celíaca/genética , Duodeno/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Mucosa Intestinal/metabolismo , Estresse Fisiológico/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Pré-Escolar , Duodeno/patologia , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Mucosa Intestinal/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Plasmócitos/metabolismo , Plasmócitos/patologia , Índice de Gravidade de Doença , Linfócitos T/metabolismo , Linfócitos T/patologia
20.
Trends Immunol ; 34(2): 67-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23122052

RESUMO

Unexpectedly, many cancers appear to induce a spontaneous adaptive T cell response. The presence of a T cell infiltrate has been linked to favorable clinical outcome in multiple cancer types. However, the innate immune pathways that bridge to an adaptive immune response under sterile conditions are poorly understood. Recent data have indicated that tumors can induce type I interferon (IFN) production by host antigen-presenting cells (APCs), which is required for a spontaneous T cell response in vivo. The innate immune sensing pathways that trigger type I IFN production are being elucidated. Host type I IFNs are also required for optimal therapeutic efficacy with radiation. This recently uncovered role for host type I IFNs for antitumor immunity has important fundamental and clinical implications.


Assuntos
Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Neoplasias/imunologia , Animais , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...